
Page 1 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Standardization of EPICS Device

Support for Data Acquisition

Stefan Simrock, ITER

Page 2 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Outline

• Motivation

• Defining the Functions

• Architecture of Nominal Device Support

• Documentation

• Implementation

• Status and Roadmap

• Example

• Conclusion

Page 3 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

• Data acquisition devices have a lot in common:

– Acquire a sample/waveform.

– Sampling rate.

– Triggering conditions.

– Unit conversion…

• ITER diagnostics:
Could the interface for accessing and configuring common
functionality be somehow standardized?

– At level of EPICS PVs?

• Benefits:

– Write “high-level” applications and interchange DAQ devices.

– Operate DAQ devices in the same way (reset, firmware update,
trigger configuration, …)

– Specify functionality by ticking what needs to be supported, rather
than writing a spec for every DAQ device.

– Reusable automated tests.

Motivation

Page 4 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Function Identification through procedures

High Level Procedure

1. Turn-on

2. Configure

a. Configure for operation

b. Up-date firmware

3. Operate

a. Acquire raw data

b. Process data (user applications)

c. Stream raw and processed data

4. Manage data acquisition

a. Change data acquisition parameters

b. Calibrate data acquisition

c. Manage system health

5. Shut-down data acquisition

Page 5 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Functions Required for DAQ
1. Power-up ADC/DAC
2. Power-up data processing

3. Initialize DAQ system
a. Initialize ADC/DAC
b. Initialize signal processing

4. Monitor DAQ Status
a) ADC/DAC type and Device ID
b) Serial number and SW version

c) Default settings
5. Control ADC/DAC parameters

a) Set Gain
b) Set Offset
c) Set Bandwidth
d) Set input parameters

(impedance, AC/DC coupling,
diff./single ended)

6. Configure data acquisition timing
a) ADC/DAC clock
b) ADC/DAC trigger
c) Timestamp on/off (timestamp)

7. Control data processing
a) Filtering
b) Decimation
c) Data compression
d) FFT
e) Calibrate input

8. Monitor I&C properties
a) Power consumption

b) Current
c) Voltage
d) Temperature

7. Configure data buffer
a. Set-buffer size
b. Set-event trigger

8. Stream data
a) Continuous streaming
b) Stream buffered data

9. Reset DAQ system
a. Soft-reset ADC/DAC
b. Soft reset signal processing

c. Power-cycle ADC/DAC
d. Power-cycle signal

processing

10. Diagnose DAQ
a) Control
b) Status

c) Data integrity
d) Monitor DAQ health

11. Set DAQ mode
a) Standby
b) Run
c) Shutdown

12. Turn-off DAQ

Page 6 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Functions Required for Image Acquisition
1. Power-up camera

2. Power-up framegrabber
3. Initialize camera system

a. Initialize camera
b. Initialize frame grabber

4. Monitor Camera Status
a) Cameratype and Device ID

b) Serial number and SW version
c) Default settings

5. Control Camera Exposure
a) Set Sensitivity
b) Set Shutter
c) Set Aperture

d) Set focus (if lens motorized)
6. Set Image properties

a) Image binning
b) Framerate
c) Dark pixel value

d) Define region of interest
e) Set-image compression

parameters
7. Configure image acquisition timing

a. Set-image trigger
b. Set-image acquisition clock

8. Configure image timestamping
a) Pixelclock
b) Shutter trigger
c) Framecounter on/off

9. Monitor I&C properties

a) Power consumption
b) Current
c) Voltage
d) Temperature

7. Configure data buffer
a. Set-buffer size

b. Set-event trigger
8. Stream image data

a) Continuous streaming
b) Stream buffered data

9. Reset camera
a. Soft reset camera

b. Soft reset frame grabber
c. Powercycle camera
d. Powercycle framegrabber

10. Diagnose camera
a) Control

b) Status
c) Image data
d) Monitor camera health

11. Set Camera mode
a) Standby
b) Run

c) Shutdown
12. Turn-off camera
13. Turn-off framegrabber

Page 7 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Function Required for Timing*
1. Power-up timing* (source + receivers)

2. Power-up distribution (global and local)
3. Initialize timing system

a. Initialize source and receivers
b. Initialize distribution

4. Configure timing
a. Master clock

b. Timing Receivers
5. Monitor timing Status

a) Device types and Device IDs
b) Serial numbers and SW versions
c) Default settings

6. Control Timing Source

a) Calibrate time
b) Set event trigger

7. Set timing receiver properties
a) Clock frequencies
b) Clock delays

c) Trigger timing
d) Trigger delays

8. Set timing distribution
a) Boundary clocks
b) Routing configuration
c) Signal levels

d) External / internal

9. Configure hardware time stamping
a) Data format
b) Time stamping model (single,

block)
c) Frame/sample counters

10. Monitor I&C properties
a) Power consumption
b) Current
c) Voltage

d) Temperature
11. Reset timing

a. Soft reset source / receiver
b. Power cycle timing receiver

12. Diagnose timing
a) Status

b) Alarms and warnings
c) Monitor timing health
d) Timing performance
e) Timing calibration

13. Set timing mode

a) Standby
b) Continuous timing
c) Pulsed timing

14. Turn-off timing source + distribution
15. Turn-off timing receiver

*Note: Timing = clocks, triggers, time

Page 8 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Standard Function for Device Use and Management

FBS 1 (Device Use)

1.Device

2.Sub device (image acquisition, ADC channel)

3.Communication

4.Timing

5.Dataflow

6.Data buffer management

7.Data access

8.Interrupt handling

9.Diagnostics

FBS 2 (Device Management)

1.Information

2.Configuration

3.Command

4.Control

5.Status

6. Automation

FBS 11

FBS 21

FBS 22

……

FBS 12

FBS 21

FBS 22

……

………..

Page 9 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

The idea is not new…(1)

• EPICS base already pre-defines a very useful collection

of records (ai, ao, mbbi, …, motor record).

• Generic Transient Recorder (GTR):

– http://www.aps.anl.gov/epics/modules/analog/gtr/

– Clock, trigger (incl. pre-trigger and soft trigger), multiple events,

number of samples.

– MEDM screen.

• AreaDetector:

– http://cars9.uchicago.edu/software/epics/areaDetector.html

– Settings, image, image processing plugins

http://www.aps.anl.gov/epics/modules/analog/gtr/
http://cars9.uchicago.edu/software/epics/areaDetector.html

Page 10 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

The idea is not new…(2)

• Nominal Device Support (NDS)

– A C++ “base class” from which

device-specific drivers are to be

derived

– Templates

• makeBaseApp.pl

• EPICS database

• Example device driver

– Documentation

• User’s manual

• Test plan

• Based on the C++

asynPortDriver

E
P

IC
S

 I
O

C

Channel Access

Record Support

Device Support

(Asyn Driver)

NDS

(port driver)

DAQ 1

Driver

User

mode

library

Operating system

Kernel

mode

driver

Kernel

mode

driver

NDS

(port driver)

EPICS DB

files

st.cmd

startup

script

Off-the-shelf

software

NDS

Prepared by

user

Legend:

DAQ N

Driver

st.cmd

template

EPICS DB

template

NDS device

driver template

Page 11 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

EPICS Device Support Architectures

(c)

Device specific

NDS driver

Channel access

NDS

PV records

asynDriver

NDS

Device specific

NDS driver

NDS driver

architecture

Device specific

C-API

Device specific

C-API

Device specific

EPCIS support

driver

Device specific

EPICS support

driver

Channel access

Pure EPICS

device support

Device specific

C-API

Device specific

C-API

Device specific

PV Records

Device specific

PV Records

(a) (b)

Device specific

asynDriver

asynDriver

Device specific

asynDriver

Channel access

asynDriver

architecture

Device specific

PV Records

Device specific

PV Records

Device specific

C-API

Device specific

C-API

Page 12 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Device specific
NDS driver

NDS

DAQ common
functionality

Timing device
support

IOC
initialixation/
deinitilization

Process Variable
definition

(.db)

PV handler's
registration
(C source)

Asynchronous data
processing

PV handlers call
dispatching

Device specific
code

asynDriver

Device specific asyn vs NDS Driver

Device specific
asynDriver

asynDriver
interface

asynDriver

Timing device
support

Device specific
code

IOC
initialiation/

deinitilization

Process Variable
definition

(.db)

PV handler's
registration
(C source)

Asynchronous data
processing

PV handlers call
dispatching

Architecture of device specific asynDriver Architecture of device specific NDS driver

Page 13 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Documentation (user’s manual)

Page 14 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Documentation (test plan)

Page 15 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

NDS Classes

• These are base classes, likely to be extended/overriden

by device-specific driver

 class GenericDAQ Classes

ChannelGroup

ADIOChannel

Dev ice Channel

ImageChannel

BaseChannel

+groups

0..*

+device +channels

1..*

+group

Page 16 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

NDS State Machines
 stm Dev ice State Machine

OFF ON RESET

INIT

ERRORDEFUNCT

[fast reset]

[slow init]

[fast init]

[slow reset]

[recoverable malfunction]

[hardware/firmware malfunction]

 stm Channel State Machine

DISABLED

READY RESET

BUSY ERROR

DEFUNCT

Device-level state machine:

Channel-level state machine:

Page 17 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Implementing a device-specific driver (1)

• The EPICS DB template declares a record:

– For standard functions, the template defaults are used.

– Device-specific drivers are free to

• add records,

• or remove the ones that are not supported/applicable.

• Register the read and/or write handlers, retrieve “callback

interrupt ID”:

– For standard functions, done in the NDS base class.

– A single-liner to add custom functions.

Page 18 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Implementing a device-specific driver (2)

• Implement the handler (called when record is

processed):

– For many standard functions, already implemented in the base

class (software emulation).

• Dispatching interrupts (triggering record processing):

Page 19 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Implementing a device-specific driver (3)

• Implement the handler (called when record is

processed):

– For many standard functions, already implemented in the base

class (software emulation).

• Dispatching interrupts (triggering record processing):

Page 20 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

DAQ Functions (1)
• A superset of all one could think of…

• Device-specific driver need not implement all…
– …but if it does, it would automatically comply with the “standard”.

Page 21 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

DAQ Functions (2)

• General:

– Device information

– Device/channel state

– Executing self-tests

– Firmware update (including checksum & compatibility checks)

• Clock settings

– Sample rate

– Clock multiplier

– Clock source

• Triggering

– Trigger condition (including “soft trigger” – “now”)

– Trigger delay (negative – pre-trigger)

Page 22 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

DAQ Functions (3)

• Filtering (FIR, IIR)

• Unit conversion

– Piece-wise cubic splines

– Settable at run-time

(double waveforms)

• Signal generation

– Piece-wise cubic splines

– Sine, wave, pulse, ….

• Fourier transforms

• Streaming

t1 2 3 4 5

1

2

3

4

x2

x3

x
1

0

0

Page 23 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Timing Devices
• Logical “events”

– Something that happens on some timing device’s terminal

– Function-oriented

– Timestamped by the timing board

– Standardized way to control event timings (origin, delay, width,

duty cycle, end time)

Page 24 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Imaging Devices

• Similar to Area Detector...

– Advice: If in doubt, use Area Detector

• Can use Area Detector plugins

• Advantage of NDS imaging devices:

– NDS devices can talk directy with each other

– E.g., high-performance streaming of images time stamped with a

NDS timing device

Page 25 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Status and Roadmap

• NDS 2.3 was released in September 30, 2013

– Support for timing devices

• Currently used only by ITER diagnostics

• Considering to be used for ESS

– Struck 8300 DAQ

– MRF-based event receiver

• E-mail support process in place

• Roadmap:

– Software support for FFT

– Automated tests

– Support for threading (lifecycle management, real-time settings,

synchronization, timers, file descriptor polling, …)

– CSS screen

Page 26 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Boards (planned to be) supported

Board Developer

ADC12500 RF-DA (ITER)

Struck SIS8300 (MTCA.4) Cosylab (ITER, ESS, DESY)

TEWS TAMC641 DMCS (ITER)

NI PXI-6682 and NI PXI-6683 NI (ITER)

NI PXIe-7966 and NI PXIe-5761 NI, UPM

PTM-DAMC-1588-10 (MTCA.4 timing) ITER, DMCS (ITER)

ATX-AMC-PTP (ATCA timing) ITER, IPFN (ITER)

ATCA-IO-PROCESSOR

(32-channel DAQ)
IPFN (ITER)

ADQ412-3G (MTCA.4 and PXIe,

4 channel 1.8GS/s ADC)
IPFN (ITER)

Microresearch Finland Timing Receiver Cosylab (ESS)

NI PXI-6259 (M-series) Cosylab (ITER)

NI PXIe-6368 (X-series) Cosylab (ITER)

Page 27 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

NDS RIO device function implementation (status)

Function Description NDM Function Implemented Notes

Get device state getState No

Read FlexRIO temperat

ure sensor

 Yes Board temperature in Celsius Deg

Read serial number getSerial Yes String with FlexRIO card SN and and FAM SN

Read Hardware Revision getHardwareRevision Yes FlexRIO Firmware identification label

Read firmware version getFirmwareVersion Yes Mayor and minor number version of LabVIEW

VI for programming the FPGA

Read Software verison getSoftwareVersion Yes String with mayor and minor identificatio of NDS RI

O (1.0)

Read input coupling setCoupling Yes NI 5761 could be AC or DC coupled. Products

with different part numbers, software cannot det

ect this.

Read channel state setChannelState No

Set/Read sample rate setClockFrequency Yes Same rate for 4 AI channels

Configure trigger No Digital trigger (start trigger)

Configure filter setFilter No 3 dB point, lowpass filter only

Calculate mean No

Read raw data getBuffer Yes Waveforms PVs for 4 analog inputs channels

Start point No

Number of elements BufferSize No Set the NELM field. Now, constant to 4096

Set decimation factor setDecimationFactor Yes

Page 28 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

NDS RIO device function implementation (status)

Function Description NDM Function Implemented Notes

Read events/s N/A Every 1 ms – Various counting mod

es

Read events/s array N/A 1000 values every 1 s - Various cou

nting modes

Read calibrated count

s/s

getValueInt32 Yes Pulses detected in 1 ms

Read calibrated count

s/s array

N/A 1000 values every 1 s - Various cou

nting modes

Read (electronic) cali

brated counts/s

N/A Every 1 ms – Various counting mod

es

Read (electronic) cali

brated counts/s array

N/A 1000 values every 1 s - Various cou

nting modes

Read (energy) calibrat

ed counts/s

N/A Every 1 ms – Various counting mod

es

Read (energy) calibrat

ed counts/s array

N/A 1000 values every 1 s - Various cou

nting modes

Provide calibration co

nstants to FPGA

N/A Various counting modes

Page 29 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Using NDS in Neutronic Diagnostics Use Case
• NI FPGA design v1.0

• Starting NDS RIO:

– EPICS st.cmd:

• ndsCreateDevice "ndsRIO", "RIO0",

"N_AI=4,N_AO=0,N_DI=0,N_DO=0,N_DIO=0,N_auxDI=3, N_auxDO=3,

N_auxAI=1, N_auxAO=2, RIOMODEL=PXIe-7966R, RIOSERIAL=0177A2AD,

RIOVI=TESTCOUNTMFCV2“

• Test signal applied to AI0 (NI5761)

– Generated with NI PXIe 5442 (62.5MS/s)

1us 1ms

21

pulses/1

ms

Page 30 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

First test OPI Panel

Pulses
1ms

Start/
Stop

Serial Number, HW
Revision, etc

FPGA Temp

Waveform AI0

4096*16ns=65µs

Detail

First OPI Panel

Page 31 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Conclusion

• Nominal Device Support (NDS) is based on a

model described in terms of structure and behavior.

• The structure of the driver is defined by C++

classes and can be easily extended to specialized

functions by overwriting the default behavior

• Since most devices for data acquisition, timing,

health management etc. use the same basic

functionality, one can standardize the

implementation of device support.

• Development and testing are greatly simplified and

hardware can be easily exchanged.

Page 32 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Back-up Slides

Page 33 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

SDD

Editor

SD

D

PV

PV

PV

PV

Static configuration

Variables

Nominal procedure to operate DAQ device

Breakdown structure of the function

Nomina

l DAQ

device

Exampl

e

EPICS

ASYN

MOD

Dummy Device

Nominal DAQ

device configuration

LINUX

Driver

Flex

RIO

ADC

SiS

8300

Reg

.

DATA
Model

Dynamic configuration

Rules:
 Static configuration parameters with any DAQ device
 GUI for configuration data
 Example of configuration parameter for nominal EPICS device

 PV structure (data model) for nominal EPICS device
 Abstract class for nominal DAQ device in EPICS
 Make dummy device to demonstrate in live system (no hardware)

Representation of Nominal DAQ device in EPICS

1
2

3

St. Cmd

DB

4

5 6

example

1

2

3

4

5

6

Catalog items

Page 34 LLRF 2013, Lake Tahoe, California, USA, Oct. 1-4, 2013

Standard Device Model

Application

EPICS

 EPICS

device

support

PV

Linux Driver

DRV Library

Hardware

Registers

Signal I/O

Case 1

Case 2 Case 3

Custom
(transparent)

custom
(transparent)

Custom
(mapping)

Custom Custom COTS

Custom COTS COTS

or

Custom

Custom Commercial

Options
Interfaces Standard Device

Functional Description

FBS 1 (Device Use)

1. Device

2. Channel

3. Communication

4. Timing

5. Dataflow

6. Data access

7. Interrupt

FBS 2 (Device

Management)

1. Information

2. configuration

3. Command

4. Control

5. Status

FBS 11

FBS 21

FBS 22

……

FBS 12

FBS 21

FBS 22

……

………..

Cust.

COTS.

DEV CLASS

ASYN DRV

Cust.

COTS.

